

roslibpy: ROS Bridge library

[image: Documentation Status]
 [https://roslibpy.readthedocs.io/en/latest/][image: Documentation: Chinese translation]
 [https://roslibpy-docs-zh.readthedocs.io][image: Github Actions CI Build Status]
 [https://github.com/gramaziokohler/roslibpy/actions][image: License]
 [https://pypi.python.org/pypi/roslibpy][image: PyPI Package latest release]
 [https://pypi.python.org/pypi/roslibpy][image: _images/version.svg]
 [https://anaconda.org/conda-forge/roslibpy][image: Supported implementations]
 [https://pypi.python.org/pypi/roslibpy]Python ROS Bridge library allows to use Python and IronPython to interact
with ROS [http://www.ros.org], the open-source robotic middleware.
It uses WebSockets to connect to
rosbridge 2.0 [http://wiki.ros.org/rosbridge_suite] and provides publishing,
subscribing, service calls, actionlib, TF, and other essential ROS functionality.

Unlike the rospy [http://wiki.ros.org/rospy] library, this does not require a
local ROS environment, allowing usage from platforms other than Linux.

The API of roslibpy is modeled to closely match that of roslibjs [http://wiki.ros.org/roslibjs].

Contents

	roslibpy: ROS Bridge library
	Main features

	Installation

	Documentation

	Contributing

	Releasing this project

	Credits

	Examples
	First connection

	Putting it all together

	Disconnecting

	Reconnecting

	Hello World: Topics

	Using services

	Creating services

	Actions

	Querying ROS API

	Advanced examples

	API Reference
	ROS Setup

	Connecting to ROS

	Main ROS concepts

	Actionlib

	TF

	Contributor’s Guide
	Code contributions

	Documentation improvements

	Bug reports

	Feature requests and feedback

	Authors

	Changelog
	Unreleased

	1.5.0

	1.4.2

	1.4.1

	1.4.0

	1.3.0

	1.2.1

	1.2.0

	1.1.0

	1.0.0

	0.7.1

	0.7.0

	0.6.0

	0.5.0

	0.4.1

	0.4.0

	0.3.0

	0.2.1

	0.2.0

	0.1.1

	0.1.0

Indices and tables

	Index

	Module Index

	Search Page

roslibpy: ROS Bridge library

[image: Documentation Status]
 [https://roslibpy.readthedocs.io/en/latest/][image: Documentation: Chinese translation]
 [https://roslibpy-docs-zh.readthedocs.io][image: Github Actions CI Build Status]
 [https://github.com/gramaziokohler/roslibpy/actions][image: License]
 [https://pypi.python.org/pypi/roslibpy][image: PyPI Package latest release]
 [https://pypi.python.org/pypi/roslibpy][image: _images/version.svg]
 [https://anaconda.org/conda-forge/roslibpy][image: Supported implementations]
 [https://pypi.python.org/pypi/roslibpy]Python ROS Bridge library allows to use Python and IronPython to interact
with ROS [http://www.ros.org], the open-source robotic middleware.
It uses WebSockets to connect to
rosbridge 2.0 [http://wiki.ros.org/rosbridge_suite] and provides publishing,
subscribing, service calls, actionlib, TF, and other essential ROS functionality.

Unlike the rospy [http://wiki.ros.org/rospy] library, this does not require a
local ROS environment, allowing usage from platforms other than Linux.

The API of roslibpy is modeled to closely match that of roslibjs [http://wiki.ros.org/roslibjs].

Main features

	Topic publishing and subscribing.

	Service calls (client).

	Service advertisement (server).

	ROS parameter management (get/set/delete).

	ROS API services for getting ROS meta-information.

	Actionlib support for interfacing with preemptable tasks.

	TF Client via the tf2_web_republisher.

Roslibpy runs on Python 3.x and IronPython 2.7.

Installation

To install roslibpy, simply use pip:

pip install roslibpy

For IronPython, the pip command is slightly different:

ipy -X:Frames -m pip install --user roslibpy

Remember that you will need a working ROS setup including the
rosbridge server and TF2 web republisher accessible within your network.

Documentation

The full documentation, including examples and API reference
is available on readthedocs [https://roslibpy.readthedocs.io/].

Contributing

Make sure you setup your local development environment correctly:

	Clone the roslibpy [https://github.com/gramaziokohler/roslibpy] repository.

	Create a virtual environment.

	Install development dependencies:

pip install -r requirements-dev.txt

You’re ready to start coding!

During development, use pyinvoke [http://docs.pyinvoke.org/] tasks on the
command prompt to ease recurring operations:

	invoke clean: Clean all generated artifacts.

	invoke check: Run various code and documentation style checks.

	invoke docs: Generate documentation.

	invoke test: Run all tests and checks in one swift command.

	invoke: Show available tasks.

For more details, check the Contributor’s Guide available as part of the documentation [https://roslibpy.readthedocs.io/].

The default branch was recently renamed to main. If you’ve already cloned this repository,
you’ll need to update your local repository structure with the following lines:

git branch -m master main
git fetch origin
git branch -u origin/main main

Releasing this project

Ready to release a new version roslibpy? Here’s how to do it:

	We use semver [http://semver.org/], i.e. we bump versions as follows:

	patch: bugfixes.

	minor: backwards-compatible features added.

	major: backwards-incompatible changes.

	Update the CHANGELOG.rst with all novelty!

	Ready? Release everything in one command:

invoke release [patch|minor|major]

	Profit!

Credits

This library is based on roslibjs [http://wiki.ros.org/roslibjs] and to a
large extent, it is a line-by-line port to Python, changing only where a more
idiomatic form makes sense, so a huge part of the credit goes to the
roslibjs authors [https://github.com/RobotWebTools/roslibjs/blob/develop/AUTHORS.md].

Examples

Getting started with roslibpy is simple. The following examples will help you
on the first steps using it to connect to a ROS environment. Before you start, make sure
you have ROS and rosbridge running (see ROS Setup).

These examples assume ROS is running on the same computer where you run the examples.
If that is not the case, change the host argument from 'localhost'
to the IP Address of your ROS instance.

First connection

We start importing roslibpy as follows:

>>> import roslibpy

And we initialize the connection with:

>>> ros = roslibpy.Ros(host='localhost', port=9090)
>>> ros.run()

Easy, right?
Let’s check the status:

>>> ros.is_connected
True

Yay! Our first connection to ROS!

Putting it all together

Let’s build a full example into a python file. Create a file named
ros-hello-world.py and paste the following content:

import roslibpy

client = roslibpy.Ros(host='localhost', port=9090)
client.run()
print('Is ROS connected?', client.is_connected)
client.terminate()

Now run it from the command prompt typing:

$ python ros-hello-world.py

The program will run, print once we are connected and terminate the connection.

Controlling the event loop

In the previous examples, we started the ROS connection with a call to run(),
which starts the event loop in the background. In some cases, we want to handle the
main event loop more explicitely in the foreground. roslibpy.Ros provides
the method run_forever() for this purpose.

If we use this method to start the event loop, we need to setup all connection handlers
beforehand. We will use the roslibpy.Ros.on_ready() method to do this.
We will pass a function to it, that will be invoked when the connection is ready.

The following snippet shows the same connection example above but
using run_forever() and on_ready:

from __future__ import print_function
import roslibpy

client = roslibpy.Ros(host='localhost', port=9090)
client.on_ready(lambda: print('Is ROS connected?', client.is_connected))
client.run_forever()

Note

The difference between run() and run_forever() is that the former
starts the event processing in a separate thread, while the latter
blocks the calling thread.

 Enable debug logging

Enable debug logging

This example shows how to enable debugging output using Python logging infrastructure.

import logging

import roslibpy

Configure logging to high verbosity (DEBUG)
fmt = '%(asctime)s %(levelname)8s: %(message)s'
logging.basicConfig(format=fmt, level=logging.DEBUG)
log = logging.getLogger(__name__)

client = roslibpy.Ros(host='127.0.0.1', port=9090)
client.on_ready(lambda: log.info('On ready has been triggered'))

client.run_forever()

 Check roundtrip message latency

Check roundtrip message latency

This example shows how to check roundtrip message latency on your system.

import logging
import time

import roslibpy

Configure logging
fmt = '%(asctime)s %(levelname)8s: %(message)s'
logging.basicConfig(format=fmt, level=logging.INFO)
log = logging.getLogger(__name__)

client = roslibpy.Ros(host='127.0.0.1', port=9090)

def receive_message(msg):
 age = int(time.time() * 1000) - msg['data']
 log.info('Age of message: %6dms', age)

publisher = roslibpy.Topic(client, '/check_latency', 'std_msgs/UInt64')
publisher.advertise()

subscriber = roslibpy.Topic(client, '/check_latency', 'std_msgs/UInt64')
subscriber.subscribe(receive_message)

def publish_message():
 publisher.publish(dict(data=int(time.time() * 1000)))
 client.call_later(.5, publish_message)

client.on_ready(publish_message)
client.run_forever()

The output on the console should look similar to the following:

$ python 02_check_latency.py
2020-04-09 07:45:49,909 INFO: Connection to ROS ready.
2020-04-09 07:45:50,431 INFO: Age of message: 2ms
2020-04-09 07:45:50,932 INFO: Age of message: 2ms
2020-04-09 07:45:51,431 INFO: Age of message: 1ms
2020-04-09 07:45:51,932 INFO: Age of message: 2ms
2020-04-09 07:45:52,434 INFO: Age of message: 3ms
2020-04-09 07:45:52,934 INFO: Age of message: 2ms
2020-04-09 07:45:53,435 INFO: Age of message: 3ms
2020-04-09 07:45:53,934 INFO: Age of message: 1ms
2020-04-09 07:45:54,436 INFO: Age of message: 2ms

 Throttle messages for a slow consumer

Throttle messages for a slow consumer

This example shows how to throttle messages that are published are a rate faster than
what a slow consumer (subscribed) can process. In this example, only the newest messages
are preserved, messages that cannot be consumed on time are dropped.

import time
import logging

from roslibpy import Header
from roslibpy import Ros
from roslibpy import Time
from roslibpy import Topic
from roslibpy.core import LOGGER

Configure logging
fmt = '%(asctime)s %(levelname)8s: %(message)s'
logging.basicConfig(format=fmt, level=logging.INFO)
log = logging.getLogger(__name__)

client = Ros(host='127.0.0.1', port=9090)

def receive_message(msg):
 header = Header(msg['seq'], msg['stamp'], msg['frame_id'])
 age = time.time() - header['stamp'].to_sec()
 fmt = 'Age of message (sequence #%d): %6.3f seconds'
 log.info(fmt, msg['seq'], age)
 # Simulate a very slow consumer
 time.sleep(.5)

publisher = Topic(client, '/slow_consumer', 'std_msgs/Header')
publisher.advertise()

Queue length needs to be used in combination with throttle rate (in ms)
This value must be tuned to the expected duration of the slow consumer
and ideally bigger than the max of it,
otherwise message will be older than expected (up to a limit)
subscriber = Topic(client, '/slow_consumer', 'std_msgs/Header',
 queue_length=1, throttle_rate=600)
subscriber.subscribe(receive_message)

seq = 0
def publish_message():
 global seq
 seq += 1
 header = Header(frame_id='', seq=seq, stamp=Time.now())
 publisher.publish(header)
 client.call_later(.001, publish_message)

client.on_ready(publish_message)
client.run_forever()

In the console, you should see gaps in the sequence of messages, because the publisher is
producing messages every 0.001 seconds, but we configure a queue of length 1, with a
throttling of 600ms to give time to our slow consumer. Without this throttling, the consumer
would process increasingly old messages.

 Publish images

Publish images

This example shows how to publish images using the
built-in sensor_msgs/CompressedImage message type.

import base64
import logging
import time

import roslibpy

Configure logging
fmt = '%(asctime)s %(levelname)8s: %(message)s'
logging.basicConfig(format=fmt, level=logging.INFO)
log = logging.getLogger(__name__)

client = roslibpy.Ros(host='127.0.0.1', port=9090)

publisher = roslibpy.Topic(client, '/camera/image/compressed', 'sensor_msgs/CompressedImage')
publisher.advertise()

def publish_image():
 with open('robots.jpg', 'rb') as image_file:
 image_bytes = image_file.read()
 encoded = base64.b64encode(image_bytes).decode('ascii')

 publisher.publish(dict(format='jpeg', data=encoded))

client.on_ready(publish_image)
client.run_forever()

 Subscribe to images

Subscribe to images

This example shows how to subscribe to a topic of images
using the built-in sensor_msgs/CompressedImage message type.

import base64
import logging
import time

import roslibpy

Configure logging
fmt = '%(asctime)s %(levelname)8s: %(message)s'
logging.basicConfig(format=fmt, level=logging.INFO)
log = logging.getLogger(__name__)

client = roslibpy.Ros(host='127.0.0.1', port=9090)

def receive_image(msg):
 log.info('Received image seq=%d', msg['header']['seq'])
 base64_bytes = msg['data'].encode('ascii')
 image_bytes = base64.b64decode(base64_bytes)
 with open('received-image-{}.{}'.format(msg['header']['seq'], msg['format']) , 'wb') as image_file:
 image_file.write(image_bytes)

subscriber = roslibpy.Topic(client, '/camera/image/compressed', 'sensor_msgs/CompressedImage')
subscriber.subscribe(receive_image)

client.run_forever()

 API Reference

API Reference

This library relies on the ROS bridge suite [http://wiki.ros.org/rosbridge_suite]
by Robot Web Tools to interact with ROS via WebSockets.

The ROS bridge protocol [https://github.com/RobotWebTools/rosbridge_suite/blob/master/ROSBRIDGE_PROTOCOL.md]
uses JSON as message transport to allow access to ROS functionality such as
publishing, subscribing, service calls, actionlib, TF, etc.

ROS Setup

In order to use this library, your ROS environment needs to be setup to run rosbridge.

First install the rosbridge suite with the following commands:

sudo apt-get install -y ros-kinetic-rosbridge-server
sudo apt-get install -y ros-kinetic-tf2-web-republisher

And before starting a connection, make sure you launch all services:

roslaunch rosbridge_server rosbridge_websocket.launch
rosrun tf2_web_republisher tf2_web_republisher

Connecting to ROS

The connection to ROS is managed by the Ros class. Besides connection and
disposal, it handles automatic reconnections when needed.

Other classes that need an active connection with ROS receive this instance
as an argument to their constructors.

	
class roslibpy.Ros(host, port=None, is_secure=False)

	Connection manager to ROS server.

	Parameters:

	
	host (str) – Name or IP address of the ROS bridge host, e.g. 127.0.0.1.

	port (int) – ROS bridge port, e.g. 9090.

	is_secure (bool) – True to use a secure web sockets connection, otherwise False.

	
blocking_call_from_thread(callback, timeout)

	Call the given function from a thread, and wait for the result synchronously
for as long as the timeout will allow.

	Parameters:

	
	callback – Callable function to be invoked from the thread.

	timeout (int) – Number of seconds to wait for the response before
raising an exception.

	Returns:

	The results from the callback, or a timeout exception.

	
call_async_service(message, callback, errback)

	Send a service request to ROS once the connection is established.

If a connection to ROS is already available, the request is sent immediately.

	Parameters:

	
	message (Message) – ROS Bridge Message containing the request.

	callback – Callback invoked on successful execution.

	errback – Callback invoked on error.

	
call_in_thread(callback)

	Call the given function in a thread.

The threading implementation is deferred to the factory.

	Parameters:

	callback (callable) – Callable function to be invoked.

	
call_later(delay, callback)

	Call the given function after a certain period of time has passed.

	Parameters:

	
	delay (int) – Number of seconds to wait before invoking the callback.

	callback (callable) – Callable function to be invoked when ROS connection is ready.

	
call_sync_service(message, timeout)

	Send a blocking service request to ROS once the connection is established,
waiting for the result to be return.

If a connection to ROS is already available, the request is sent immediately.

	Parameters:

	
	message (Message) – ROS Bridge Message containing the request.

	timeout (int) – Number of seconds to wait for the response before
raising an exception.

	Returns:

	Either returns the service request results or raises a timeout exception.

	
close(timeout=10)

	Disconnect from ROS.

	
connect()

	Connect to ROS.

	
delete_param(name, callback=None, errback=None)

	Delete parameter from the ROS Parameter Server.

Note

To make this a blocking call, pass None to the callback parameter .

 Contributor’s Guide

Contributor’s Guide

Contributions are always welcome and greatly appreciated!

Code contributions

We love pull requests from everyone! Here’s a quick guide to improve the code:

	Fork the repository [https://github.com/gramaziokohler/roslibpy] and clone the fork.

	Create a virtual environment using your tool of choice (e.g. virtualenv, conda, etc).

	Install development dependencies:

pip install -r requirements-dev.txt

	Run the docker container:

docker run -d -p 9090:9090 --name roslibpy_integration_tests gramaziokohler/integration-tests-bridge /bin/bash -c "roslaunch /integration-tests.launch"

	Make sure all tests pass:

invoke test

	Start making your changes to the main branch (or branch off of it).

	Make sure all tests still pass:

invoke test

	Stop your docker container:

docker stop roslibpy_integration_tests

	Add yourself to AUTHORS.rst.

	Commit your changes and push your branch to GitHub.

	Create a pull request [https://help.github.com/articles/about-pull-requests/] through the GitHub website.

During development, use pyinvoke [http://docs.pyinvoke.org/] tasks on the
command prompt to ease recurring operations:

	invoke clean: Clean all generated artifacts.

	invoke check: Run various code and documentation style checks.

	invoke docs: Generate documentation.

	invoke test: Run all tests and checks in one swift command.

	invoke: Show available tasks.

Documentation improvements

We could always use more documentation, whether as part of the
introduction/examples/usage documentation or API documentation in docstrings.

Documentation is written in reStructuredText [http://docutils.sourceforge.net/rst.html]
and use Sphinx [http://sphinx-doc.org/index.html] to generate the HTML output.

Once you made the documentation changes locally, run the documentation generation:

invoke docs

Bug reports

When reporting a bug [https://github.com/gramaziokohler/roslibpy/issues]
please include:

	Operating system name and version.

	ROS version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Feature requests and feedback

The best way to send feedback is to file an issue on
Github [https://github.com/gramaziokohler/roslibpy/issues]. If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

 Authors

Authors

	Gramazio Kohler Research @gramaziokohler [https://github.com/gramaziokohler]

	Gonzalo Casas <casas@arch.ethz.ch> @gonzalocasas [https://github.com/gonzalocasas]

	Mathias Lüdtke @ipa-mdl [https://github.com/ipa-mdl]

	Beverly Lytle @beverlylytle [https://github.com/beverlylytle]

	Alexis Jeandeau @jeandeaual [https://github.com/jeandeaual]

	Hiroyuki Obinata @obi-t4 [https://github.com/obi-t4]

	Pedro Pereira @MisterOwlPT [https://github.com/MisterOwlPT]

	Domenic Rodriguez @DomenicP [https://github.com/DomenicP]

 Changelog

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/]
and this project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

Unreleased

Added

Changed

Fixed

Deprecated

Removed

1.5.0

Added

	Added a wait event to close on IronPython to ensure the close request is sent before returning.

Changed

Fixed

	Fixed reconnection behavior on IronPython which would trigger reconnects even after a manual disconnect.

Deprecated

Removed

1.4.2

Added

Changed

	Added tls to the twisted requirement (#111).

Fixed

Deprecated

Removed

1.4.1

Added

Changed

Fixed

	Fixed bug with action client/server and now they work as expected.

	Fixed Python 2.7 incompatibilities introduced in 1.4.0.

Deprecated

Removed

1.4.0

Added

Changed

	Switched to black for python code formatting.

	Fix incompatible settings between black and flake8.

	Updated Github Actions workflows to remove python 3.6 builds.

	Replaced occurrences of raise Exception with more specific Exception subclasses.

Fixed

Deprecated

Removed

1.3.0

Added

	Added function to set the default timeout value.

	Added ROS host and port parameters to the command-line interface.

Fixed

	Fixed #87 where a goal could be marked as terminal on result alone rather
than both result and status.

	Ensure input of Time is always two integers.

1.2.1

Added

Changed

Fixed

	Fixed blocking issues on the Twisted/Autobahn-based implementation of websockets.

Deprecated

Removed

1.2.0

Changed

	Changed behavior: Advertising services automatically reconnect when websockets is reconnected.

	References to ROS master change to ROS.

Added

	Added Header and Time data types.

	Added ROS API method to retrieve current ROS time: ros.get_time.

1.1.0

Added

	Added set_initial_delay, set_max_delay and set_max_retries to RosBridgeClientFactory to control reconnection parameters.

	Added closing event to Ros class that gets triggered right before closing the connection.

1.0.0

Changed

	Changed behavior: Topics automatically reconnect when websockets is reconnected.

Added

	Added blocking behavior to more ROS API methods: ros.get_nodes and ros.get_node_details.

	Added reconnection support to IronPython implementation of websockets.

	Added automatic topic reconnection support for both subscribers and publishers.

Fixed

	Fixed reconnection issues on the Twisted/Autobahn-based implementation of websockets.

0.7.1

Fixed

	Fixed blocking service calls for Mac OS.

0.7.0

Changed

	The non-blocking event loop runner run() now defaults to 10 seconds timeout before raising an exception.

Added

	Added blocking behavior to ROS API methods, e.g. ros.get_topics.

	Added command-line mode to ROS API, e.g. roslibpy topic list.

	Added blocking behavior to the Param class.

	Added parameter manipulation methods to Ros class: get_param, set_param, delete_param.

0.6.0

Changed

	For consistency, timeout parameter of Goal.send() is now expressed in seconds, instead of milliseconds.

Deprecated

	The timeout parameter of ActionClient() is ignored in favor of blocking until the connection is established.

Fixed

	Raise exceptions when timeouts expire on ROS connection or service calls.

Added

	Support for calling a function in a thread from the Ros client.

	Added implementation of a Simple Action Server.

0.5.0

Changed

	The non-blocking event loop runner now waits for the connection to be established in order to minimize the need for on_ready handlers.

Added

	Support blocking and non-blocking service calls.

Fixed

	Fixed an internal unsubscribing issue.

0.4.1

Fixed

	Resolve reconnection issues.

0.4.0

Added

	Add a non-blocking event loop runner.

0.3.0

Changed

	Unsubscribing from a listener no longer requires the original callback to be passed.

0.2.1

Fixed

	Fix JSON serialization error on TF Client (on Python 3.x).

0.2.0

Added

	Add support for IronPython 2.7.

Changed

	Handler on_ready now defaults to run the callback in thread.

Deprecated

	Rename run_event_loop to the more fitting run_forever.

0.1.1

Fixed

	Minimal documentation fixes.

0.1.0

Added

	Initial version.

 Python Module Index

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 roslibpy	

 	
 	
 roslibpy.actionlib	

 	
 	
 roslibpy.tf	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	ActionClient (class in roslibpy.actionlib)

 	add_goal() (roslibpy.actionlib.ActionClient method)

 	
 	advertise() (roslibpy.Service method)

 	(roslibpy.Topic method)

B

 	
 	blocking_call_from_thread() (roslibpy.Ros method)

C

 	
 	call() (roslibpy.Service method)

 	call_async_service() (roslibpy.Ros method)

 	call_in_thread() (roslibpy.Ros method)

 	call_later() (roslibpy.Ros method)

 	
 	call_sync_service() (roslibpy.Ros method)

 	cancel() (roslibpy.actionlib.ActionClient method)

 	(roslibpy.actionlib.Goal method)

 	close() (roslibpy.Ros method)

 	connect() (roslibpy.Ros method)

D

 	
 	delete() (roslibpy.Param method)

 	delete_param() (roslibpy.Ros method)

 	
 	dispose() (roslibpy.actionlib.ActionClient method)

 	(roslibpy.tf.TFClient method)

E

 	
 	emit() (roslibpy.Ros method)

F

 	
 	from_sec() (roslibpy.Time static method)

G

 	
 	get() (roslibpy.Param method)

 	get_action_servers() (roslibpy.Ros method)

 	get_message_details() (roslibpy.Ros method)

 	get_node_details() (roslibpy.Ros method)

 	get_nodes() (roslibpy.Ros method)

 	get_param() (roslibpy.Ros method)

 	get_params() (roslibpy.Ros method)

 	get_service_request_callback() (roslibpy.Ros method)

 	get_service_request_details() (roslibpy.Ros method)

 	
 	get_service_response_details() (roslibpy.Ros method)

 	get_service_type() (roslibpy.Ros method)

 	get_services() (roslibpy.Ros method)

 	get_services_for_type() (roslibpy.Ros method)

 	get_time() (roslibpy.Ros method)

 	get_topic_type() (roslibpy.Ros method)

 	get_topics() (roslibpy.Ros method)

 	get_topics_for_type() (roslibpy.Ros method)

 	Goal (class in roslibpy.actionlib)

 	GoalStatus (class in roslibpy.actionlib)

H

 	
 	Header (class in roslibpy)

I

 	
 	id_counter() (roslibpy.Ros property)

 	is_advertised() (roslibpy.Service property)

 	(roslibpy.Topic property)

 	is_connected() (roslibpy.Ros property)

 	
 	is_finished() (roslibpy.actionlib.Goal property)

 	is_preempt_requested() (roslibpy.actionlib.SimpleActionServer method)

 	is_subscribed() (roslibpy.Topic property)

 	is_zero() (roslibpy.Time method)

M

 	
 	Message (class in roslibpy)

 	
 module

 	roslibpy

 	roslibpy.actionlib

 	roslibpy.tf

N

 	
 	now() (roslibpy.Time static method)

 	
 	nsecs() (roslibpy.Time property)

O

 	
 	off() (roslibpy.Ros method)

 	
 	on() (roslibpy.Ros method)

 	on_ready() (roslibpy.Ros method)

P

 	
 	Param (class in roslibpy)

 	
 	publish() (roslibpy.Topic method)

R

 	
 	Ros (class in roslibpy)

 	
 roslibpy

 	module

 	
 roslibpy.actionlib

 	module

 	
 	
 roslibpy.tf

 	module

 	run() (roslibpy.Ros method)

 	run_forever() (roslibpy.Ros method)

S

 	
 	secs() (roslibpy.Time property)

 	send() (roslibpy.actionlib.Goal method)

 	send_feedback() (roslibpy.actionlib.SimpleActionServer method)

 	send_on_ready() (roslibpy.Ros method)

 	Service (class in roslibpy)

 	ServiceRequest (class in roslibpy)

 	ServiceResponse (class in roslibpy)

 	set() (roslibpy.Param method)

 	
 	set_param() (roslibpy.Ros method)

 	set_preempted() (roslibpy.actionlib.SimpleActionServer method)

 	set_rosapi_timeout() (in module roslibpy)

 	set_succeeded() (roslibpy.actionlib.SimpleActionServer method)

 	SimpleActionServer (class in roslibpy.actionlib)

 	start() (roslibpy.actionlib.SimpleActionServer method)

 	subscribe() (roslibpy.tf.TFClient method)

 	(roslibpy.Topic method)

T

 	
 	terminate() (roslibpy.Ros method)

 	TFClient (class in roslibpy.tf)

 	Time (class in roslibpy)

 	
 	to_nsec() (roslibpy.Time method)

 	to_sec() (roslibpy.Time method)

 	Topic (class in roslibpy)

U

 	
 	unadvertise() (roslibpy.Service method)

 	(roslibpy.Topic method)

 	
 	unsubscribe() (roslibpy.tf.TFClient method)

 	(roslibpy.Topic method)

 	update_goal() (roslibpy.tf.TFClient method)

W

 	
 	wait() (roslibpy.actionlib.Goal method)

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 roslibpy: ROS Bridge library

 		
 roslibpy: ROS Bridge library

 		
 Main features

 		
 Installation

 		
 Documentation

 		
 Contributing

 		
 Releasing this project

 		
 Credits

 		
 Examples

 		
 First connection

 		
 Putting it all together

 		
 Controlling the event loop

 		
 Disconnecting

 		
 Reconnecting

 		
 Hello World: Topics

 		
 Writing the talker node

 		
 Writing the listener node

 		
 Running the example

 		
 Using services

 		
 Creating services

 		
 Actions

 		
 Action servers

 		
 Action clients

 		
 Querying ROS API

 		
 Usage from the command-line

 		
 Usage from Python code

 		
 Advanced examples

 		
 Enable debug logging

 		
 Check roundtrip message latency

 		
 Throttle messages for a slow consumer

 		
 Publish images

 		
 Subscribe to images

 		
 API Reference

 		
 ROS Setup

 		
 Connecting to ROS

 		
 Main ROS concepts

 		
 Topics

 		
 Services

 		
 Parameter server

 		
 Time

 		
 Actionlib

 		
 TF

 		
 Contributor’s Guide

 		
 Code contributions

 		
 Documentation improvements

 		
 Bug reports

 		
 Feature requests and feedback

 		
 Authors

 		
 Changelog

 		
 Unreleased

 		
 1.5.0

 		
 1.4.2

 		
 1.4.1

 		
 1.4.0

 		
 1.3.0

 		
 1.2.1

 		
 1.2.0

 		
 1.1.0

 		
 1.0.0

 		
 0.7.1

 		
 0.7.0

 		
 0.6.0

 		
 0.5.0

 		
 0.4.1

 		
 0.4.0

 		
 0.3.0

 		
 0.2.1

 		
 0.2.0

 		
 0.1.1

 		
 0.1.0
